Tunable nanomechanics of protein disulfide bonds in redox microenvironments.
نویسندگان
چکیده
Disulfide bonds are important chemical cross-links that control the elasticity of fibrous protein materials such as hair, feather, wool and gluten in breadmaking dough. Here we present a novel computational approach using the first-principles-based ReaxFF reactive force field and demonstrate that this approach can be used to show that the fracture strength of disulfide bonds is decreased under the presence of reducing agents, due to a loss of cross-link stability controlled by the chemical microenvironment. Simulations in explicit solvents and dithiothreitol (DTT) indicate an intermediate step involving weakened elongated bonds, illustrating the tunability of the elasticity, rupture mechanism and strength of proteins. We provide a mechanistic insight into the fracture mechanism of protein disulfide bonds and illustrate the importance of the redox microenvironment, where factors such as accessibility, mechanical strain and local redox potential govern the dominating rupture mechanism and location. The method used here provides a general computational protocol for studying mechanochemical fracture of large-scale protein materials concurrently with experimental efforts.
منابع مشابه
Tailoring protein nanomechanics with chemical reactivity
The nanomechanical properties of elastomeric proteins determine the elasticity of a variety of tissues. A widespread natural tactic to regulate protein extensibility lies in the presence of covalent disulfide bonds, which significantly enhance protein stiffness. The prevalent in vivo strategy to form disulfide bonds requires the presence of dedicated enzymes. Here we propose an alternative chem...
متن کاملProtein disulfides and protein disulfide oxidoreductases in hyperthermophiles.
Disulfide bonds are required for the stability and function of a large number of proteins. Recently, the results from genome analysis have suggested an important role for disulfide bonds concerning the structural stabilization of intracellular proteins from hyperthermophilic Archaea and Bacteria, contrary to the conventional view that structural disulfide bonds are rare in proteins from Archaea...
متن کاملEndoplasmic reticulum-dependent redox reactions control endoplasmic reticulum-associated degradation and pathogen entry.
SIGNIFICANCE Protein misfolding within the endoplasmic reticulum (ER) is managed by an ER quality control system that retro-translocates aberrant proteins into the cytosol for proteasomal destruction. This process, known as ER-associated degradation, utilizes the action of ER redox enzymes to accommodate the disulfide-bonded nature of misfolded proteins. Strikingly, various pathogenic viruses a...
متن کاملConservation and diversity of the cellular disulfide bond formation pathways.
Two pathways for the formation of biosynthetic protein disulfide bonds have been characterized in the endoplasmic reticulum (ER) of eukaryotes. In the major pathway, the membrane-associated flavoprotein Ero1 generates disulfide bonds for transfer to protein disulfide isomerase (PDI), which is responsible for directly introducing disulfide bonds into secretory proteins. In a minor fungal-specifi...
متن کاملRecombinant Production of a Novel Fusion Protein: Listeriolysin O Fragment Fused to S1 Subunit Of Pertussis Toxin
Background: Some resources have suggested that genetically inactivated pertussis toxoid (PTs) bear a more protective effect than chemically inactivated products. This study aimed to produce new version of PT, by cloning an inactive pertussis toxin S1 subunit (PTS1) in a fusion form with N-terminal half of the listeriolysin O (LLO) pore-forming toxin. Methods: Deposited pdb structure file of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the mechanical behavior of biomedical materials
دوره 5 1 شماره
صفحات -
تاریخ انتشار 2012